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Abstract

Non-linear vibration of the CRT shadow mask with impact damping wires is analyzed in consideration
of the mask tension distribution and the effect of wire impact damping. A reduced order FEM model of the
shadow mask is obtained from dynamic condensation of the mass and stiffness matrices, and damping wire
is modelled using the lumped parameter method to effectively describe its contact interactions with the
shadow mask. The non-linear contact–impact model is composed of spring and damper elements, of which
parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively.
The analysis model of the shadow mask with damping wires is experimentally verified through impact tests
of shadow masks performed in a vacuum chamber. Using the validated analysis model of the shadow mask
with damping wires, the ‘design of experiments’ technique is applied to search for the optimal damping wire
configuration so that the vibration attenuation of the shadow mask is maximized.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

The cathode ray tube (CRT) for computer monitors or TV sets is composed of a glass envelope
and its inner parts. Among these parts, the shadow mask plays an important role in the CRT; it
filters red, green and blue (RGB) electron beams emitted from electron gun to fit the desired RGB
phosphors on the screen. Excessive vibrations of the shadow mask subject to external disturbances
may thus lead to landing shifts of the electron beams from the desired phosphors, deteriorating
the color purity of the picture on the screen. This is called the microphonic phenomenon, which is
an undesirable characteristic of the CRT.
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Shadow masks are classified into two groups depending upon the manufacturing method: the
press-formed and tension types. Among them, the tension type shadow mask has been developed
mainly for large CRTs because of its durable stiffness characteristics against deformation.
However, it exhibits a very light damping effect in the vacuum environment. Once a tension
shadow mask is disturbed by an impulsive shock, the resulting vibration usually lasts for 1 or
2min. To effectively attenuate such prolonged vibration, adjustment of tension distribution of the
shadow mask and use of additional damping equipment are widely adopted in practice.

The V-shaped tension distribution, with large tension at both ends and small tension at the
shadow mask center, and the M-shaped tension distribution have been attempted to enhance the
vibration reduction efficiency of the tension shadow mask [1,2]. However, it has been found that
the microphonic phenomenon is not sufficiently prevented by adjustment of the tension
distribution alone, requiring additional damping mechanism for the tension shadow mask.

Among others, damping wire is known to be a good candidate for such damping mechanism,
although there are some drawbacks such as the difficulty in assembling and the presence of its
shadow on the screen. This study is mainly concerned with the vibration analysis of the tension
shadow mask with damping wires.

The majority of previous works, which are mostly patents, on the vibration analysis of the
tension shadow mask with damping wires have relied on experimental methods. Ohmura [3]
experimentally evaluated the effects of damping wires on the vibration of an aperture grille
tension shadow mask, showing that the vibration is reduced but it is transferred to the
neighboring grilles. A vibration reduction method for the shadow mask was also proposed
through adjustment of the shadow mask curvature in order to maximize the contact force between
damping wire and shadow mask in the regions of interest [4].

Many patents including Ref. [5] discussed the role of damping wire fixture in the vibration
attenuation, relying on experimental methods and inventor’s intuition. There have been only a few
analytical studies on the effects of damping wires on the vibration characteristics of the shadow
mask. For example, Shin [6] attempted to analyze the vibration characteristics of a simple flat
shadow mask with constant tension distribution and damping wires using a commercial FEM
code, but the simulation results were not in good agreement with the experiments, mainly due to
poor modelling of the contact mechanism.

In this work, the vibration of the curved shadow mask with V-shaped tension distribution, as
shown in Fig. 1, is analyzed in consideration of the effect of wire impact damping. First of all, we
develop a reduced order dynamic model of the shadow mask with V-shaped tension distribution
using a commercial FEM code and the dynamic condensation method, and a lumped-parameter
model of the damping wire. In the dynamic condensation process, the nodes of wire models are
chosen so that they match with the nodes of the condensed mask model and thus the contact
interaction between the wires and the mask surface can be conveniently described. The contact
mechanism between the damping wire and the shadow mask plate is modelled as a non-linear
contact–impact model composed of spring and damper elements of which parameters are
determined from the Hertzian contact theory and the restitution coefficient, respectively. For the
sake of the computational efficiency as well as accuracy, the deduced impact stiffness coefficient is
further reduced in the simulations.

The analysis model of the shadow mask with damping wires is experimentally verified through
impact tests of shadow masks performed in a vacuum chamber. Using the validated analysis
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model of the shadow mask with damping wires, the ‘design of experiments’ technique is applied to
search for the optimal damping wire configuration so that the vibration attenuation of the shadow
mask is maximized.

2. Modelling of the shadow mask

2.1. Fe analysis of the tension shadow mask

Consider the typical commercial shadow mask shown in Fig. 1, which has V-shaped tension
distribution along the x-axis. Shadow mask for CRT is a thin steel plate with the array of small
holes, of which the shape and size are determined by some rules. Fig. 2 shows the typical array of
holes of a slit shadow mask. It is impractical, if not impossible, to analyze a full mask FE model
accounting for the accurate shape and size of the whole array of holes, since a mask has millions
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Fig. 1. Tension shadow mask with damping wires.

Fig. 2. Extraction of effective material properties using unit cell model.
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of holes. For the efficiency of analysis, an anisotropic continuum plate model without holes has
been commonly adopted, introducing the effective material properties extracted from the original
plate model [7]. The effective material properties can be calculated from the analysis of unit cell
model of the original shadow mask under proper boundary conditions, as shown in Fig. 2. When
symmetric forces are imposed to a real continuum plate, the deformed shape of a very small
rectangular element remains as a rectangle, which is used for boundary conditions of the unit cell
model. The effective material properties in the x; y directions are then obtained as [7]

Ex ¼
sx

ex

¼
ðFx=dy dzÞ

h=dx
nyx ¼

ey

ex

¼
v=dy

h=dx
;

Ey ¼
sy

ey

¼
ðFy=dx dzÞ

v=dy
nxy ¼

ex

ey

¼
h=dx

v=dy
; ð1Þ

where the subscripts x and y represent the x and y directions, respectively; E is the Young’s
modulus and s is the normal stress; e and n are the normal and the shear strains, respectively; dx;
dy and dz are the undeformed element dimensions of the unit cell model in the x, y and z
directions, respectively; and, h and v are the deformations of the unit cell model in the x and y

directions due to the loadings Fx andFy; respectively.
Table 1 compares the original and effective material properties of the tested shadow mask of

interest. Fig. 3 and Table 2 compares the measured and computed modes of the tested shadow
mask without damping wires, which are in good agreement with each other. Note that each mode
tends to be localized along the x direction. Higher modes are pushed away from the plate center
towards the ends where the tension is higher. This fact is well confirmed in Fig. 4, which compares
the dominant natural frequency distribution of the tested shadow mask without damping wires
along the x position obtained from experiments and FE analysis.

2.2. Dynamic condensation of mass and stiffness matrices

There are too many degrees of freedom in a full FE model of the shadow mask to effectively
conduct the non-linear vibration analysis of the shadow mask with damping wires, requiring
dynamic condensation of the full FE shadow mask model without damping wires. Since the
shadow mask mainly vibrates along the z direction, the degrees of freedom in the z direction are
chosen as the master degrees of freedom and the others as the slave degrees of freedom [8].
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Table 1

The original and effective material properties of the shadow mask

Original Effective Ratio (%)

Ex (N/mm2) 2.1� 105 4.220� 102 0.2

Ey (N/mm2) 1.567� 105 74.6

nxy 0.3 0.41 137

nyx 0.000698 0.23

Density (kg/mm3) 7.80� 10�6 5.95� 10�6 76.3

Nominal dimension 610� 460� 0.1mm3
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Fig. 3. Comparison of mode shapes obtained from (a) experiments and (b) FE analysis.
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The equation of motion of the tension shadow mask is obtained, using the FEM, as

M0 .uþ K0u ¼ 0; ð2Þ

where M0 and K0 are the mass and the stiffness matrices, respectively. The co-ordinate vector u; of
which degrees of freedom is six times the number of nodes, can be partitioned into the retained
vector, um; and the eliminated vector, us; which are associated with the master and slave degrees of
freedom, respectively. Note that the retained vector, um; corresponds to the z directional co-
ordinate vector, of which degrees of freedom is one sixth of u: Partitioning M0 and K0 in a
compatible manner, Eq. (2) becomes

Mmm Mms

Msm Mss

" #
.um

.us

( )
þ

Kmm Kms

Ksm Kss

" #
um

us

( )
¼ 0: ð3Þ

The second row of Eq. (3) can be reduced to, assuming that the relationship between us and um is
not significantly affected by the inertia effect,

Ksmum þ Kssus ¼ 0 or us ¼ �K�1
ss Ksmum: ð4Þ

Thus we obtain the relationship given by

u ¼
um

us

" #
¼

I

�K�1
ss Ksm

" #
um ¼ Rum: ð5Þ
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Table 2

Natural frequencies of the shadow mask without damping wires

Mode 1st 2nd 3rd 20th

Full model 106.3 111.1 115.7 180.3

Condensed model 106.5 111.6 116.5 189.2

Measured 106 111 116 188
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Fig. 4. Dominant natural frequency distribution.
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Expressing the kinetic and the potential energy of the system in terms of um and using Lagrange’s
equation, we can obtain the equation of motion of the tension shadow mask with respect to the
reduced degrees of freedom, um; as

Mm .um þ Kmum ¼ 0; ð6Þ

where

Mm ¼Mmm �MmsK
�1
ss Ksm � KmsK

�1
ss Msm þ KmsK

�1
ss MssK

�1
ss Ksm;

Km ¼Kmm � KmsK
�1
ss Ksm: ð7Þ

Table 2 indicates that the errors in natural frequency of the lower modes computed using the
reduced order model fall within 1%. It is mainly due to the fact that the z directional
displacements of the shadow mask are indeed dominant.

Accounting for the damping and disturbance forces, Eq. (6) can be rewritten as

Mm .um þ Cm ’um þ Kmum ¼ Fm; ð8Þ

where Cm is the damping matrix and the disturbance force vector Fm ¼ FC þ FE ; FC and FE are
the non-linear contact and external force vectors, respectively. The damping coefficient is
normally determined by considering the experimental damping value of the shadow mask in
vacuum CRT. In this work, it is assumed that Cm ¼ bKm; b being a constant, implying that higher
modes are more heavily damped than lower modes [8,9].

3. Modelling of damping wire

The distributed mass of damping wire is lumped along the x direction at the nodes of the mask
FE model to conveniently describe the contact interaction between wires and mask surface as
shown in Fig. 5. The lumped masses are obtained as

mi ¼ r
ðDsi�1 þ DsiÞ

2
; ð9Þ

where Dsi is the ith element length and r is the mass per unit length of damping wire.Initial
distributed contact force f ðxÞ of damping wire can be expressed as

f ðxÞ ¼ �T
@2uðxÞ
@x2

; ð10Þ
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where T is the tension of the wire, and uðxÞ is the displacement function of x in the z direction.
Since Eq. (10) can be approximated as

FðxiÞ ¼ f ðxiÞ � Dxi ¼ �
TðxÞ
Dx

����
i

�DuðxiÞ ¼ �ki � DuðxiÞ; ð11Þ

where DuðxiÞ ¼ uðxi�1Þ � 2uðxiÞ þ uðxiþ1Þ; and the lumped stiffnesses of damping wire can be
expressed, assuming a uniform tension T along the wire, as

ki ¼
TðxÞ
Dx

����
i

¼
T

Dxi

; ð12Þ

where Dxi is the ith element length of damping wire along the x direction.
The mean mi and ki of the tested damping wire based on the mass per unit length of 1:35�

10�5 kg=m and the tension of 130 gf, are about 1:85� 10�5 kg and 200N/m, respectively, and its
fundamental natural frequency is 248Hz.

4. Non-linear impact model

In order to examine the contact mechanism between the damping wire and the shadow mask
plate, their x � y planar motions in a resonant mode of the shadow mask were captured by using a
high-speed camera. It was found that the measured motion of the damping wire of 30mm in
diameter on the x � y plane relative to the mask is limited to 3–5 mm, whereas the z directional
displacement is up to 100mm. Thus, the impact in the z direction is considered to be the main
source of interaction between the wire and the mask, the work done by friction being negligibly
small.

When the shadow mask with non-uniform tension distribution, such as the V-shaped tension
shadow mask of interest, resonates in a mode, its vibration mode is localized. On the other hand,
the damping wire hardly vibrates, not resonating in the mask mode, and thus it tends to stand still
in the air. This explains why the impact mechanism plays a major role in the interaction between
the wire and the mask.

Contact problems are characterized by the constraints imposed on contact boundaries. In the
treatment of contact constraints, two basic methods are available: the Lagrange multiplier method
and the penalty method. The former method is not efficient to handle the structures with too
many degrees of freedom such as the shadow mask system of interest, since it requires the inverse
of stiffness matrix to obtain Lagrange multiplier in every computational time step [10–12]. The
latter has been widely adopted in many commercial FE codes, but the determination of
the penalty parameter depends on user’s experience and trials and errors [10,13]. Therefore, we
decided to introduce the contact–impact element composed of spring and damper in order to
effectively describe the contact interactions, using the Hertzian contact theory and the concept of
restitution coefficient.
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4.1. Impact stiffness

The impact stiffness coefficient can be calculated using the Hertzian contact theory developed
for two-cylinder case. Fig. 6 shows the two cylinders of length L, but with two different diameters
D1 and D2; which are in contact under pressure P: The indentation length b can be obtained from
the Hertzian contact theory as

b ¼ 1:60
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pKDCE

p
; ð13Þ

where

p ¼ P=L; CE ¼
1� n21

E1
þ

1� n22
E2

and KD ¼ D1D2=ðD1 þ D2Þ: Here, the subscripts 1 and 2 represent cylinder 1 (shadow mask) and
cylinder 2 (damping wire), respectively; Ei and ni; i ¼ 1;2, are the Young’s modulus and the
Poisson ratio, respectively. Since the compression of cylinder 1 along the axis of loading is given,
for E1 ¼ E2; n1 ¼ n2 and D1bD2, by [14,15]

Du ¼
2pð1� n2Þ

pE

1

3
þ ln

2D2

b

� 	
ð14Þ

the contact stiffness coefficient can be expressed as

Kc ¼
dp

du
: ð15Þ

For the nominal tension level, 130 gf, of damping wire, Kc was determined to be 2:12� 108 N=m:
This extremely high value of Kc is due to the assumption of indentation of semi-infinite rigid body
[15], causing an extraordinary computational burden.

4.2. Impact damping coefficient

The impact damping coefficient (Cc) can be calculated using the concept of restitution. Since the
impedance of the damping wire (mass per unit length: 1:35� 10�5 kg=m; diameter: 30mm) is far
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smaller than that of the shadow mask (mass per unit area: 0.595 kg/m2, thickness: 0.1mm), the
shadow mask can be modelled as a spring–damper foundation system and each element of
the damping wire as an impacted mass, as shown in Fig. 7. From this simplistic impact model, the
equivalent damping coefficient can be easily estimated using the ratio between the velocities before
and after on-set of impact. The restitution coefficient r is defined as

r ¼ �
’uðtoutÞ
’uðtinÞ

¼
’uðð1=2ÞtÞ
�� ��

’uð0Þj j
¼ e�zonðt=2Þ; ð16Þ

where ’uðtinÞ and ’uðtoutÞ are the velocities of impacted mass before and after on-set of impact,
respectively, and on is the natural frequency of the spring–damper foundation during contact with
the impacted mass, and t is the period of motion of the spring–damper foundation.Using the
relation on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
� t ¼ 2p; the equivalent impact damping ratio in terms of the restitution

coefficient r can be determined as

zr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln rÞ2

p2 þ ðln rÞ2

s
: ð17Þ

The impact damping coefficient (Cc) can then be expressed as

Cc ¼ 2zr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KcMdw

p
; ð18Þ

where Mdw is the lumped mass of damping wire element.
Now, we evaluate the computational accuracy and time in response calculations of the shadow

mask with damping wires for the deduced impact stiffness and damping coefficients. Fig. 8
compares the effect of various contact stiffnesses on the response calculation at three selected
points of the shadow mask with three damping wires for r ¼ 0:8: The response points 1, 2 and 3
were selected at ðx; yÞ ¼ ð0; 0Þ; (100,0) and (220,0), so that fundamental modal responses are well
captured. Note that the contact stiffness Kc larger than 2:12� 105 N=m has little influence on the
computational accuracy of the mask displacement, although the computation time drastically
increases. It takes about 18 h on a newest super computer to run a single simulation case with
Kc ¼ 2:12� 108 N=m for 1 s long results. Thus, we decided to use Kc ¼ 2:12� 105 N=m for the
simulation works, considering the computational efficiency as well as the computational accuracy.

Fig. 9 compares the effect of various contact damping coefficients on the response calculation
of the shadow mask with damping wires for Kc ¼ 2:12� 105 N=m: Note that, unlike the impact
stiffness, variations in the impact damping coefficient Cc have little influence on the
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computational accuracy and time. In the simulations, the typical value of Cc ¼ 0:887N s/m was
used, which corresponds to the case of Mdw ¼ 1:85� 10�7 kg and r¼ 0:8 (steel balls) [16].

5. Non-linear vibration analysis

5.1. Initial displacements

The n dimensional displacement vector of the shadow mask and the l dimensional displacement
vector of the damping wires can be written as, including the contactable and non-contactable
elements,

um ¼ f um1 um2 ? umi ? umq umðqþ1Þ umðqþ2Þ ? umj ? umn g
T; ð19Þ

ud ¼ f ud1 ud2 ? udi ? udq udðqþ1Þ udðqþ2Þ ? udj ? udl g
T; ð20Þ

where the subscripts m and d indicate the shadow mask and damping wire, respectively, and q is
the total number of contactable degrees of freedom of the shadow mask and damping wires.

The initial displacements of the shadow mask and damping wires to the initial assembling
forces, which can be calculated by the analysis of static deformation, are denoted as

umjt¼0 ¼ f dm1 ? dmi ? dmn g
T; ð21Þ

ud jt¼0 ¼ f dd1 ? ddi ? ddl g
T: ð22Þ

On the other hand, the initial compression dci of the ith element, having the contact stiffness Kci;
can be obtained as

dci ¼
F0i

Kci

; i ¼ 1; 2;y; q; ð23Þ

where Foi is the corresponding contact force.The equations of motion of the assembled system can
then be written as

Mm .um þ Cm ’um þ Kmum ¼ Fm; ð24Þ

Md .ud þ Cd ’ud þ Kdud ¼ Fd ; ð25Þ

where Fm is the force vector to the shadow mask, which is composed of the non-linear contact
forces (FC) at contactable points and the external forces (FE) given by

Fm ¼ FC þ FE ¼ fFC1 FC2 ? FCi ? FCq 0 0 ? 0 gTn þ FE ; ð26Þ

where FCi; the contact force acting on the ith contact point of the shadow mask, is given by

FCi ¼
Kci½ðudi � ddiÞ � ðumi � dmiÞ þ dci� þ Ccið ’udi � ’umiÞ for udi � umiSddi � dmi � dci ðcontactÞ

0 otherwise ðnon-contactÞ

(
:

ð27Þ

The force Fd acting to damping wires reacts against the non-zero elements of FC ; i.e.,

Fd ¼ f�FC1 �FC2 ? �FCi ? �FCq 0 0 ? 0 gTl : ð28Þ

ARTICLE IN PRESS

S.-D. Kim et al. / Journal of Sound and Vibration 265 (2003) 1003–10231014



Fig. 10 shows the analysis model of the shadow mask system, including the damping wire and
contact elements.

5.2. Non-linear vibration analysis

Fig. 11 shows the typical relative displacement and velocity, and the contact spring and
damping forces at a contact point calculated from the non-linear vibration analysis, when the
shadow mask is excited by a half-sine impact. The thick solid line in Fig. 11(a) indicates the
relative displacement between the mask and the damping wire at a pair of mating contact points;
positive (negative) value means contact (no contact) between them. When they are in contact, the
contact spring force, which is defined as the penetrated displacement times the contact stiffness
coefficient, remains positive; otherwise, it vanishes. The contact damping force, which is defined as
the penetration rate times the contact damping coefficient, tends to become large at the on-set of
contact, due to the relatively large velocity, as shown in Fig. 11(b).

6. Experimental verification of the analysis model

Because the tension shadow mask is a thin tension plate with many small holes, its dynamic
characteristics can be greatly affected by aerodynamic damping in the air. For fair comparison of
the analytical and experimental results, we constructed a vacuum test chamber to simulate the
commercial CRT environment, as shown in Fig. 12.

To perform the impact tests for the shadow mask placed in the vacuum test chamber, a
pendulum type impact hammer is designed to excite the shadow mask such that the thread, which
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Fig. 10. Analysis model of the shadow mask and damping wire.
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initially holds the pendulum against the gravity, is burned by an outside heat source and thus the
pendulum is released. The responses of the shadow mask in the vacuum chamber are measured
using a laser Doppler vibrometer through the sensing window, as shown in Fig. 12. The excitation
and measurement points on the shadow mask are marked in Fig. 13. Note that the excitation
point was carefully selected to equally well excite the fundamental and second modes.

Fig. 14(b) compares the measured and estimated time histories of the shadow mask without
damping wires obtained by using the measured impact force in Fig. 14(a) as the input force. It
shows that they are in good agreement with each other, confirming the validity of the linear
analysis model of shadow mask without damping wires.

Fig. 15(a) shows the measured impact force, which is then used as the input force to calculate
the analytical response of the shadow mask with three damping wires. Fig. 15(b) compares the
measured and estimated response spectra, which are also in good agreement for the case with
three damping wires. Note that the effect of damping wires on the response spectrum is significant.
Fig. 15(c) and (d) show the corresponding time histories, which again confirm the previous
observations. It can be concluded here that the analysis model can well describe the non-linear
vibration characteristics of the shadow mask with the damping wires.
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Fig. 12. Experimental set-up.
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7. Effects of design parameters of damping wires

In the design stage of shadow mask, some design parameters associated with damping wires are
considered to be important, as shown in Fig. 16 and summarized in Table 3. They are the number
of damping wires (nw), the tension of damping wire (T), the separation distance of damping wires
(Dy) and the fixing positions of damping wires relative to the edge line of the shadow mask (Dx;
Dz). The tension parameter of damping wire is replaced by its natural frequency ratio (rt) to the
shadow mask, i.e., rt ¼ fd1=fm1; where fd1 and fm1 are the fundamental natural frequencies of
damping wire and shadow mask without damping wires, respectively. The reference design
parameters are set to be fm1 ¼ 106Hz, y0 ¼ 460mm, Dy0 ¼ y0=4 ¼ 115mm, Dx0 ¼ 2:5mm and
Dz0 ¼ 0:0mm. In the simulations, the shadow mask is excited at its center point by a half-sine
impact to get its vibration characteristics. The duration and amplitude of the impact are 10ms and
0.5G, respectively. The calculated responses at ðx; yÞ ¼ ð0; 0Þ; (100,0) and (220,0) along the x-axis
of the mask were used to evaluate the vibration reduction with the design parameters varied. For
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the performance index, the root mean square (r.m.s.) response for the initial 10 s, zr:m:s:; was used
and the Taguchi method [17] developed for design of experiments was employed to effectively
search for an optimal parameter design.

Fig. 17 is the plot of parameter effects on zr:m:s:: It implies that the tension and the number of
damping wires, that mainly increase the stiffness of tension shadow mask, are the significant
design parameters and that the variations in Dx; Dy and Dz; if not too large, hardly affect the
vibration attenuation of the shadow mask. The case with nw ¼ 3; rt ¼ 1:3; Dy ¼ Dy0; Dx ¼ 2Dx0

and Dz ¼ �2mm is considered to be the candidate for best performance.
A confirmation run, which is widely adopted in Taguchi method to check the reproducibility of

results, was conducted using the optimal levels for each design parameters and the result was
compared with the predicted value. Predicted values of zr:m:s: were found to be 46.05 and 45.52mm,
respectively, for the case only with two optimal major parameters, nw ¼ 3 and rt ¼ 1:3; and for the
case with all optimal parameters. On the other hand, the simulation for the confirmation run led
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to zr:m:s: ¼ 45:22 mm, which is in good agreement with the predictions. In conclusion, the
pronounced sensitivity of the number and the tension of damping wires to zr:m:s: has been well
justified.

Note that the efficiency of vibration reduction is nearly proportional to the natural frequency of
the damping wire. On the contrary, it has been reported that, for the flat uniform tension shadow
mask, the worst performance is expected when the natural frequency of the damping wire
coincides with that of the shadow mask [6,18].

Fig. 18 compares the time responses of the shadow mask at its center (point 1) without damping
wires and with the optimally tuned damping wires. Close examination of the vibration reduction
rates up to 10 s indicates that the efficiency of vibration reduction due to introduction of the
optimized damping wires increases by 33% at point 1, 41% at point 2 and 50% at point 3,
compared with the mask without damping wires. On the other hand, the performance index, zr:m:s:;
which is the vibration reduction efficiency in terms of the RMS response for the initial 10 seconds,
was decreased by 13% at point 1, 19% at point 2, and 28% at point 3, respectively.
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8. Conclusion

The reduced order dynamic model of the tension shadow mask was developed using a
commercial FEM code, and the lumped parameter model of damping wire was used to easily
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Table 3

Design parameters of damping wires

Level nw rt Dy=Dy0 Dx=Dx0 Dz

1 3 1.3 2 2 0

2 2 1.0 1 1 �2mm

3 1 0.7

rt ¼ fd1=fm1; Dy0 ¼ y0=4; Dx0 ¼ 2:5 mm; Dz0 ¼ 0 mm:
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Fig. 17. Plot of parameter effects.
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describe the contact interactions with the shadow mask. Non-linear contact–impact mechanism
composed of spring and damper elements was introduced to describe the interaction of the
shadow mask and damping wire. The spring and damper constants were determined using the
Hertzian contact theory and the concept of restitution coefficient, respectively. Impact tests of
shadow masks in a vacuum chamber were successfully carried out so that the modelling scheme
was validated with fair accuracy. Using the verified analysis model, parametric study with the
damping wire design parameters varied was performed based on the Taguchi method, in order to
evaluate the parameter effects on the impulse response of the shadow mask. It was found that
the tension and the number of damping wires are the most significant parameters. The results of
the parametric study suggested that the optimized damping wires can reduce the vibration of the
shadow mask by 30–50% compared with the case without damping wires.
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